Isoperimetric estimates in low-dimensional Riemannian products

نویسندگان

چکیده

Let $$(T^k,h_k)=(S_{r_1}^1\times S_{r_2}^1 \times \cdots S_{r_k}^1, dt_1^2+dt_2^2+\cdots +dt_k^2)$$ be flat tori, $$r_k\ge \ge r_2\ge r_1>0$$ and $$({\mathbb {R}}^n,g_E)$$ the Euclidean space with metric. We compute isoperimetric profile of $$(T^2\times {\mathbb {R}}^n, h_2+g_E)$$ , $$2\le n\le 5$$ for small big values volume. These computations give explicit lower bounds $$T^2\times {R}}^n$$ . also note that similar estimates $$(T^k\times h_k+g_E)$$ k\le 7-k$$ may computed, provided $$(T^{k-1}\times {R}}^{n}, h_{k-1}+g_E)$$ exist. this explicitly $$k=3$$ use symmetrization techniques product manifolds, based on work Ros (Global theory minimal surfaces (Proc. Clay Mathematics Institute Summer School, 2001). American Mathematical Society, Providence, 2005) Morgan (Ann Glob Anal Geom 30:73–79, 2006).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric Conditions and Diffusions in Riemannian Manifolds

We study diiusions in Riemannian manifolds and properties of their exit time moments from smoothly bounded domains with compact closure. For any smoothly bounded domain with compact closure, ; and for each positive integer k; we characterize the kth exit time moment of Brownian motion, averaged over the domain with respect to the metric density, using a variational quotient. We prove that for R...

متن کامل

Isoperimetric type problems in Riemannian manifolds

The isoperimetric problem : In the classical isoperimetric problem, one is looking for a minimizer of the area functional subject to some volume constraint. This provides a way to construct constant mean curvature hypersurfaces since, when solutions exist and are regular enough, they are characterized by the fact that they are constant mean curvature hypersurfaces. Few information on the soluti...

متن کامل

Some Isoperimetric Comparison Theorems for Convex Bodies in Riemannian Manifolds

We prove that the isoperimetric profile of a convex domain Ω with compact closure in a Riemannian manifold (M, g) satisfies a second order differential inequality which only depends on the dimension of the manifold and on a lower bound on the Ricci curvature of Ω. Regularity properties of the profile and topological consequences on isoperimetric regions arise naturally from this differential po...

متن کامل

Relative Isoperimetric Inequality for Minimal Submanifolds in a Riemannian Manifold

Let Σ be a domain on an m-dimensional minimal submanifold in the outside of a convex set C in S or H. The modified volume M Σ is introduced by Choe and Gulliver 1992 and we prove a sharp modified relative isoperimetric inequality for the domain Σ, 1/2 mωmM Σ m−1 ≤ Volume ∂Σ−∂C , where ωm is the volume of the unit ball of R. For any domain Σ on a minimal surface in the outside convex set C in an...

متن کامل

Sub-riemannian Metrics and Isoperimetric Problems in the Contact Case

1. Invariants. A contact sub-Riemannian metric is a triple (X,∆, g) consisting of a (2n+ 1)-dimensional manifold X, a distribution ∆ on X, which is a contact structure, and a metric g on ∆. It defines a metric on X by measuring via g the length of smooth curves that are tangent to ∆. All the considerations in this paper are local: we consider only germs (X,∆, g)q0 at a fixed point q0. There are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2021

ISSN: ['1572-9060', '0232-704X']

DOI: https://doi.org/10.1007/s10455-021-09757-6